A common fixed point theorem in strictly convex Menger PM-spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Common Fixed Point Theorems in Menger PM Spaces

Employing the common property E.A , we prove some common fixed point theorems for weakly compatible mappings via an implicit relation in Menger PM spaces. Some results on similar lines satisfying quasicontraction condition as well as ψ-type contraction condition are also proved in Menger PM spaces. Our results substantially improve the corresponding theorems contained in Branciari, 2002 ; Rhoad...

متن کامل

Common Fixed Point Theorems in Non-Archimedean Menger PM-Spaces

M. Alamgir Khan Department of Mathematics, Eritrea Institute of Technology Asmara, Eritrea (N. E. Africa) [email protected] Abstract. The aim of this paper is to prove a related common fixed point theorem for four mappings in two complete non-Archimedean Menger PM-spaces which extends and generalizes the result of Fisher [1, 2] , Jain et al. [4] , Nesic [5] and Popa [6]. Mathematics Subject Cl...

متن کامل

Transversal spaces and common fixed point Theorem

In this paper we formulate and prove some xed and common xed pointTheorems for self-mappings dened on complete lower Transversal functionalprobabilistic spaces.

متن کامل

Common Fixed Point Theorems in Menger Spaces

In this paper Theorem 3.1 of Kubiaczyk and Sushil Sharma [5] is shown to hold even under weaker hypothesis (Theorem 2.2) and we obtain a fixed point theorem (Theorem 2.3) involving occasionally weakly compatible maps and also prove a coincidence point theorem (Theorem 2.4) for a pair of self maps under certain conditions. Examples are provided to show that the hypothesis in Theorems 2.3 and 2.4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2014

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1404735j